AWA 3A56068 Distortion \& Noise Meter

S.N. 451. April 2023		
TR1	5TW6206	
TR2	1TX60180; 570 0-220 sec;	
V1	EF86 Telefunken	
V2	EF86 Telefunken	
V3	EF86 Philips	8Y4 D3A2
V4	EF86 Philips	8Y4 D3A2
V5	6AN8A RCA	
Caps	Ducon cans	174, 174, 174, 174
	Ducon axial	184
	UCC can	2564, 2564
	Mustards	D 3W, D 3W, 044H, 044H, D1, D2N
	Vane	18682,
Pots	Colvern CLR	PLS 003/413
Resistors	s IRC	6423, 6418,
	Welwyn	$n \quad 5905-99$ 021-6832

Issues: C32, C33 rely on clamp band for ground. Chassis used for power supply OV rectifier and B+ filtering. 1 bad and 1 poor 1N3195 diodes in bridge. No bleed resistance for B+. V5 6AN8 with leaky grids. CRO output is effectively floating, and no nearby gnd terminal. Jittery RV3 wiper. No socket for external measurement of notch filter output - still need access to top of chassis for adjustments.

Differences: Humdinger RV8 wiper taken to chassis via $47 \mathrm{k} / / 1 \mathrm{M}$, and via 0.47 uF 400 V mustard to mains protective earth (which is floating and goes to TR2 earth screen (check) - as per 1A56068 schematic.

Dating appears to be manufactured abt 1964-5. JKA $=\mathrm{Hi}$ input $; \mathrm{JKB}=$ Lo input.

Testing:

- E-cap reforming:

C32 100uF 350V; 122uF $1.8 \Omega 100 \mathrm{~Hz}<95 u A 335 V$ *
C33 100uF 350V; 124uF $0.56 \Omega 100 \mathrm{~Hz}<75 u A 335 V$
C2 16uF 450V; 20uF $2.9 \Omega 100 \mathrm{~Hz}<70 u A 440 V$
C18 16uF 450V; 18.9uF $2.8 \Omega 100 \mathrm{~Hz}<70 u \mathrm{~A} 440 \mathrm{~V}$
C31 16uF 450V; 20.0uF $2.9 \Omega 100 \mathrm{~Hz}<90 u A 440 \mathrm{~V}$
C14 16uF 450V; 19.1uF $2.8 \Omega 100 \mathrm{~Hz}<65 u \mathrm{~A} 440 \mathrm{~V}$
C6 16uF 450V; 22uF $4.5 \Omega 100 \mathrm{~Hz}<90 u A 430 V$
C15 16uF 450V; 20uF 8.5 $100 \mathrm{~Hz}<80 u \mathrm{~A} 430 \mathrm{~V} \quad *$
C16 8uF 300V; 8.7uF $7.5 \Omega 100 \mathrm{~Hz}<35 u A$ 290V

- Replaced C20, C26, C27, C28 with 100uF 16V.
- Mains earth and IR ok (>2G at 1 kVdc).
- Replaced rectifier diodes with UF4007 and modified OV wiring.

AWA 3A56068 Distortion \& Noise Meter

- Added $56 \mathrm{k} \Omega$ PRO2 across C33 (3.6mA @ 200V) as bleed.
- Changed to 250V primary tap with Belling-Lee 1A 3AG fuses. No valves: 7.5Vac, 266V B+. All valves: $6.5 \mathrm{Vac}, 172 \mathrm{~V}$ B+ (8.8 mA loading due to 6AN8).
- Changed to PT secondary $+10 \%$ Red. Swapped out 6AN8. 230Vdc overshoot on power up; 196V $B+, 6 V$ R61 $=8.8 \mathrm{~mA}$ B+ load. V1/6=160V; V2/1=120V; V3/1=122V; V4/6=126V; V5/6=108V; $\mathrm{V} 5 / 1=80 \mathrm{~V}$. Some noisy readings.
- Added $1 \mathrm{M} \Omega$ load to CRO terminal.
- Noisy V4 and V5 stages. Shorted the C17 input to V4, but then just removed V4 and V5 perhaps also removed noise on $\mathrm{B}+$.
- Signal level after C16 reduces by 10 dB for each resistor step. Distortion in CAL is $<0.005 \%$ (ie. V1 amp only, with V2, notch, V3 bypassed) with 0.1 M unbal input and 180 mVrms output at top of atten. H3 increases a bit with Unbal bridging.
- REW and EMU-0404 via 10:1 probe across SWC/C16 attenuator to measure noise floor and spectrum of signal via CAL or notch setting of SWB, with CAL signal level adjust. 1 kHz test tone from EMU-0404 unbalanced headphone with HD's $<0.005 \%$ in to rear panel 4-pin socket. Coherent averaging used for better discrimination of harmonic distortion levels. Tone 1 kHz frequency locked to RTA FFT.
- Distortion with notch cct in is ~ 0.3 to $0.4 \% 2^{\text {nd }}$ and $3^{\text {rd }}$ harmonics, but rises with signal level to $>1 \%$; $\sim 60 \mathrm{mVrms}$ on top of atten for $0.3-0.4 \% \mathrm{H} 2$ (20 mVrms for $<0.1 \%$).
- REW frequency spectrum with notch tweaked to 1 kHz gives about -12 to -13 dB depth. REW confirms 1000 Hz .
- Removing V4 and V5 raises B+ to ~ 234 Vdc .
- Noisy CAL pot - cleaned.
- Better matching of R13 to R17 improved notch depth to ${ }^{\sim}-15 \mathrm{~dB}$ (padded R17 with series $18 k+1 k 8$). Further careful adjustments of $R V 3, C 8, C 12, C 10(\Delta f)$, and $R V 6 A(R)$ can suppress 1 kHz fundamental to -65 to -70 dB (it's a bit jittery below -65 dB and depends on max signal level). Fundamental can be suppressed to same or just below H 2 and H 3 , but depends on cal signal level due to added distortion from notch amp circuitry as H 2 and H 3 increase about 1520dB when in distortion mode.
- RV3 appears to be unstable - sprayed and then better - still to do RV2 and RV4.
- Hum reduction with RV8 best done in distortion mode by observing 100 Hz sidebands on 1 kHz signal - hum 100 Hz levels suppressed to at or below spectrum noise floor.

To do:

- Possible increasing HD levels with signal level through notch filter - replace C6 and C15 with poly caps (lower leakage) and compare.
- Matching of R14/R16, R13/R17, R12/R18 - just used fixed resistors for series padding to achieve better than 0.02% matching (4-digit discrimination), and clean around switch terminals to minimise leakage noise, and clean RV2 and RV4 wipers/tracks.
- Add chassis top connection (2 terminals) for external connection of 10:1 scope probe for spectrum analyser measurement of notch filter output.
- Add in V4 and V5 and roll V4 to see influence.

Nominal photos from another unit:

DISTORTION AND NOISE METER

TYPE 3A56068

HANDBOOK 2-56068R Issue 2

Amalgamated Wireless (Australasia) Limited,
47 York Street, SYDNEY.

1. BRIEF DESCRIPTION

1.1 Application

The A.W.A. Distortion and Noise Meter type 3A56068 is suitable for the measurement of total waveform distortion, noise and/or hum voltages in all audio frequency circuits. It is useful as a level indicator, and may be used as a selective frequency measuring device.

When used with a suitable broadcast station monitor, such as A. W. A. Amplitude Modulation Monitor type 2A51926, overall performance tests can be carried out on the audio frequency characteristics of broadcast type transmitters.

The selective frequency range is continuously variable from $25 \mathrm{c} / \mathrm{s}$ to $25 \mathrm{kc} / \mathrm{s}$ in three steps, and the meter scale is calibrated for volume levels (dbm), noise levels (db), and distortion (\%).

The instrument can be supplied for mounting in a standard 19 in . equipment rack, or in a cabinet for portable use.

Design Summary
The instrument consists essentially of an amplifier, a frequency selective network followed by a calibrated step attenuator, and a highgain valve voltmeter.

The audio frequency signal to be measured is applied to the input and the reference level is set by the calibration control. The frequency selective network is then switched into circuit. This network has incorporated in it a continuously variable R. C. filter system which, when balanced, completely eliminates the fundamental frequency voltage and passes all frequencies that are spaced more than one octave away from the fundamental. After elimination of the fundamental, the remaining voltage, consisting of all frequencies that are multiples of the fundamental, together with noise and hum, is applied to the calibrated voltmeter and compared with the initial reference voltage. The ratio of these readings, when expressed as a percentage, gives the distortion factor of the signal being measured. As the gain of the voltmeter section can be varied by 50 db ., full scale distortion factor readings as low as 0.3% can be measured.

Audio frequency noise voltages are measured with the frequency determining network out of circuit, and as the gain of the amplifier can be varied by 70 db ., full scale readings of noise voltages down to -70 db can be read on the calibrated scale of the meter.

Audio signal levels can be measured with reference to 1 mW in 600Ω.

1.3 Performance Data

(a) Distortion Measurement

Distortion Range:

Distortion is indicated by an averagereading meter. Five ranges are provided for full scale readings of 0.3 , $1.0,3.0,10$ and 30%.
Fundamental Frequency Range: $25 \mathrm{c} / \mathrm{s}$ to $25 \mathrm{kc} / \mathrm{s}$, covered in three ranges.

Input Impedance:

Harmonic Response:
(0.1 M Ω input)

Residual Distortion:

Input Voltages:
$0.1 \mathrm{M} \Omega$ unbalanced and 600Ω bridging, both balanced and unbalanced. Bridging loss is less than 0.25 db .
Within 1 db at 2 nd harmonic (with respect to CAL \& NOISE position) up to $5 \mathrm{kc} / \mathrm{s}$ fundamental, improving at 3rd harmonic.
Within 2 db at 2 nd harmonic for 5 kc / s to $25 \mathrm{kc} / \mathrm{s}$ fundamental.
Not exceeding 0.15% in the range 50 c / s to $10 \mathrm{kc} / \mathrm{s}$, rising to not more than 0.3% outside this range.
$0.1 \mathrm{M} \Omega$ input: 0.5 to 25 V r.m.s. Bridging inputs: 0.5 to 8 V r.m.s.
(b) Noise and Audio Signal Level Measurement

Meter Ranges:

Noise Level Measurement: Signal Level Measurement: Accuracy of Measurement:
Input Impedance:
Frequency Response:
0. $1 \mathrm{M} \Omega$ Input:
Bridging Input:

Residual Noise:

0 to -85 db .
+20 to -50 dbm .
$\pm 5 \%$ of full scale for sine waves.
As for Distortion Measurement.

Within 3 db from $25 \mathrm{c} / \mathrm{s}$ to $200 \mathrm{kc} / \mathrm{s}$. $\pm 0.25 \mathrm{db}$ from $50 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$. $\pm 1.0 \mathrm{db}$ from $25 \mathrm{c} / \mathrm{s}$ to $25 \mathrm{kc} / \mathrm{s}$.
15 db below full scale on the most sensitive range.
(c) Power Requirements

The instrument operates from a supply of 220 to 250 V ., 50
c / s. The power consumption is less than 20 watts.
(d) Valve Complement

$\frac{\text { Type }}{* \text { EF86 }}$	$\frac{\text { Quantity }}{4}$
6AN8	1

* EF86 valve used in V1 must be Telefunken brand to minimise noise.

1.4 Mechanical Construction

The unit is constructed on a chassis, which is attached to the front panel to form a complete assembly. The ends of the chassis extend to the full height of the front panel, and are flanged to take top and bottom covers when the instrument is mounted in a rack. The top cover is secured by two quick-release fasteners, and the bottom cover by two 5BA screws. When the covers are in place, the instrument is totally screened. In the portable unit, a metal case is provided, and the covers are not required.

Each valve socket is mounted on a plate which carries a component assembly: the complete sub-assembly, consisting of the valve, socket and components associated with it, may be removed (after unsoldering the connecting wires) by releasing the two securing nuts.

The preset potentiometers for the dbm. adjustment (RV7) and the frequency ranges (RV2, RV3 and RV4) are mounted on the chassis at the left-hand side, and are accessible from the top. The hum adjustment potentiometer (RV8) is mounted on the back of the chassis and is accessible from the rear.

The mains fuses are under a protective cover beneath the righthand end of the chassis.

The dimensions of the instrument are as follows:-

	Rack Mounting	
Height:	7 in.	$9.1 / 4 \mathrm{in}$.
Width:	19 in.	$20.1 / 2 \mathrm{in}$.
Depth:	8 in.	$9.1 / 2 \mathrm{in}$.
Weight:	15 lb.	24 lb.

2. INSTALLATION

2. 1 Location

The instrument should not be installed or used in close proximity to any other unit or component with a strong magnetic field.
2.2 Valves and Fuses

When the instrument is first received, it should be inspected to check that the valves are firmly in place, and that the fuses are in the correct clips to suit the mains voltage being used (refer 2.4 below). The position of the valves may be checked by the stencilling on the chassis.
2.3 Removal from Case
(a) Portable Unit

1. Remove the two $1 / 4 \mathrm{in}$. Whitworth screws from each side of the front panel.
2. Slide the unit free of the case, threading the power cable through from the rear.
3. When replacing the case, check that the power cable does not become kinked inside.
(b) Rack Mounting Unit
4. To remove the top cover, turn the fasteners through onequarter turn; the cover may then be withdrawn.
5. To remove the bottom cover, release the two screws underneath the ends of the chassis and slide the cover backwards.
6. The unit is secured to the rack by two $1 / 4 \mathrm{in}$. Whitworth screws at each end of the front panel.

2.4 Adjustment for Mains Supply Voltage

Adjustment of the tappings of the rectifier transformer primary is made by inserting the fuses in the appropriate clips, as shown on the circuit diagram, Drg. 56068 H 1.

The fuse arrangements for various voltages are as follows:-

Mains Voltage	$\frac{\text { FS1 }}{220}$	$\frac{\text { FS2 }}{0}$
230	220	10

2/2

Mains Voltage	FS1	FS2
	240	0
250	240	10

2. 5 Input Connections

The input connections may be made to jacks or terminals on the front panel, or to a plug and socket at the rear. This latter connection is useful in rack-mounted applications, where a semi-permanent connection is required. Note that the input from the plug is disconnected when the input jacks are used, but not when the terminals only are used.

The input jacks accommodate either:-
(a) Single tip-ring-sleeve patch plug in left side jack to make HIGH connection via tip.

OR(b) Single tip-ring-sleeve patch plug in right side jack to make HIGH connection via ring.
OR(c) Double carrier patch plug to make HIGH connection via tip in left side jack and LOW connection via tip in right side jack.
For the connection at the rear, a plug is supplied: the input should be wired to contacts 3 and 4 , and contact 1 used for earthing the screening

Earth Connection

When the rack-mounting type instrument is used, care should be taken that good earthing is achieved. The front panel should make good metallic contact with the rack, and the chassis should be bonded to the rack earth bus.

3. OPERATION

3.1 Setting Up

Set the mechanical zero of the meter. Connect the instrument to the mains supply, switch on and note that the pilot lamp is illuminated. Allow at least five minutes warm-up period to ensure accurate results.

Under very humid conditions the length of warm-up period required to bring the balance of the frequency selective amplifier back within the range of the " R " control may be considerably longer, particularly on the lowest frequency range. A coarse R control is provided in the form of a preset adjustment accessible by screwdriver through a hole in the " R " control knob.

NOTE: To avoid erroneous results make sure that there is no pick-up from strong magnetic fields in the vicinity of the instrument.
3.2 Audio Frequency Source

When making distortion and noise measurements on an amplifier or other equipment, an audio frequency source is required for feeding the unit under test. This source must be substantially free from distortion, noise and hum, particularly when low values are being measured. An instrument suitable for this purpose is the A.W.A. Low Distortion Oscillator type 1A57321

CAUTION: The socket at the rear and the terminals on the front panel are wired in parallel. When using either connection, take care that undesired inputs are not connected to the other.

3.3
 Distortion Measurements

1. Connect the audio frequency source to the input terminals of the unit under test, and set to the required frequency. Connect the output of the unit to whichever input terminals are convenient on the distortion and noise meter. Adjust the signal to give the desired output level from the unit under test. It will generally be neeessary to terminate this output with a suitable load resistor, which is then bridged by the distortion meter. The input level to the 600Ω circuit should not exceed 1 V when working below $50 \mathrm{c} / \mathrm{s}$ and measuring very low distortion levels.
2. Select one of the three input-impedance arrangements to suit the output of the unit under test.
3. Set the range switch to CAL \& NOISE, and the meter switch to 100%. Adjust the CAL control until the meter reads full scale.
4. Set the range switch to the required range and the FREQUENCY dial to the same nominal frequency as the external oscillator.
5. Vary the FREQUENCY dial about the nominal setting, and at the same time adjust the R control, until the meter shows an absolute minimum reading. If a minimum cannot be obtained within the range of the " R " control (RV6A), adjust the preset " R " control (RV6B) by means of a screwdriver through the hole in the knob of the " R " control. The meter range switch should be changed as required to obtain a conveniently readable deflection. The ΔF control provides a vernier adjustment of frequency, but its use is not required except when measuring very low values of distortion.
It will be appreciated, however, that the reading of a bridgetype meter, although calibrated in r.m.s. values, is proportional to the average value of the residual components. The error due to this is small except when two or more harmonics predominate and are of similar amplitude. If in this particular case, the highest possible accuracy is required, an external r.m.s. reading voltmeter should be used, connected to the C.R.O. terminal.
6. The meter reading finally obtained is the total harmonic distortion (plus noise) registered directly as a percentage on the scale.

3.4 Noise Measurements

1. Calibrate the instrument with a signal input to the unit under test, as described in steps 1 to 3 of sub-section 3.3 above.
2. Leave the range switch in the CAL \& NOISE position, and remove the input signal. It is usual to then terminate the input of the unit under test by a resistance equivalent to the generator circuit impedance.
3. Increase the meter sensitivity by turning the meter switch clockwise until a convenient deflection is obtained. The arithmetic sum of the meter reading in db . and the switch position in db . is the voltage ratio between the noise and the initial signal. For convenience in reading, the noise figures are engraved in red, to distinguish them from the volume level figures, which are in black.

3.5 Audio Signal Level Measurements

NOTE: $0 \mathrm{dbm}=1 \mathrm{~mW}$. in $600 \Omega=0.775 \mathrm{~V}$, across 600Ω.

1. Turn the range switch to the dbm . position.
2. The level in a 600Ω circuit carrying a steady tone sine wave may be measured directly in dbm. by turning the meter switch to the appropriate position. The signal level will be indicated by the arithmetical sum of the meter reading and the switch position.

3. 6 Use with Modulation Monitor

1. Connect the output of the modulation monitor to the input of the instrument. A special cable is provided with the A. W.A. Modulation Monitor series A51926 to match the 4 -pin connector at the rear of the unit.
2. Turn the input switch to the $0.1 \mathrm{M}-\Omega$ UNBAL. position.
3. When the transmitter is modulated by a suitable audio oscillator (see 3.2 above) the audio characteristics of the transmitter signal may be checked for noise and distortion as previously described.

4. TECHNICAL DESCRIPTION

4.1 Input Switching

The input is switched by SWA to the primary of TR1, for the 600Ω connections, with one side earthed for the unbalanced condition. For the high impedance input, the signal is connected directly to the grid circuit via the potentiometer RV1 (CAL.). The CAL. control is essentially a gain control and is used for all measurements except audio signal level (dbm). For level measurements, the gain is preset by RV7, (dbm. ADJ.) for the standard reference level.

4.2 Amplifier

This section consists of a two-stage amplifier (V1 and V2), coupled via an R. C. filter network to a third amplifier stage (V3). The network is a Wien type bridge, with two resistive arms and two reactive arms which determine the rejection frequency by means of the ganged capacitors and switched resistors for the three ranges. One of the resistive arms is made variable to form the R control, which is used for balance. A small variable capacitor is used as a vernier adjustment of frequency. This is the $\triangle \mathrm{F}$ control (C10) across the lower reactive arm. The manipulation of these controls enables the fundamental to be completely suppressed, leaving only the distortion and noise products to be measured.

The feedback applied to the first two stages reduces the residual noise and distortion in this section: the overall feedback network (R 28 , C15) has the effect of sharpening the attenuation of the rejection circuit, and allows the amplifier to give approximately unity gain at all frequencies differing by an octave or more from the fundamental.

Voltmeter
The amplifier output is fed via the meter range potentiometer (SWC and R29 to R38) to a sensitive valve voltmeter. This consists of two pentode amplifiers followed by a triode output stage feeding the bridge rectifier meter. Approximately 16 db of feedback is used to keep the response flat.

The unrectified output is available at a terminal designated C.R.O. on the front panel. This enables the residual noise and distortion to be visually monitored.

4.4 Power Supply

The H.T. supply is derived from a bridge-connected silicon
rectifier circuit fed by mains transformer TR2, which also supplies the valve heaters from a common 6.3 V winding.

The transformer is tapped on the primary side to accommodate supply voltages between 220 and 250 . The d.c. output of the rectifiers is filtered by a pi-network consisting of R58, R59, R61 and C31, C32, C33.

A balance control (RV8) is provided to allow optimum hum reduction to be achieved.

5. MAINTENANCE

5.1 General

The equipment has been carefully aligned and adjusted prior to delivery, and normal maintenance should be confined strictly to cleaning, and the lubrication of switches, when necessary, following the procedure given below.

PRESET CONTROLS SHOULD NOT BE DISTURBED WITHOUT GOOD REASON, and then only if the proper instruments are available for making the tests described in sub-section 5.3.

The circuit is not critical of valve replacement, and no special precautions need be taken in the selection of valves, other than to check that no excessive residual noise is produced.

Mechanical

The wafer-type switches may be cleaned when necessary with carbon tetrachloride, applied sparingly to the contacts only, by means of a fine pointed brush. The contacts may afterwards be lubricated with a very small quantity of Servisol, or other approved switch lubricant. If the movement becomes stiff, a drop of light machine oil may be applied to the spindle bearing and clicker plate.

The units in the ganged capacitor should be in alignment mechanically, and the couplings tight. The pointer should be on the end mark below the $25 \mathrm{c} / \mathrm{s}$ calibration point when the gang is fully meshed.

5.3 Electrical

5.3.1 Test Instruments Required

(a) A.W.A. Low Distortion Oscillator 1A57321 (or equivalent).
(b) $600 \Omega \mathrm{~T}$-pad attenuator of known accuracy.
(c) Accurate A.C. voltmeter to read $2.45 \mathrm{~V} \pm 2 \%$ at $1000 \mathrm{c} / \mathrm{s}$.
(d) A.W.A. Voltohmyst A56010 or 1A56074 (or equivalent).

5.3.2 Noise Tests

NOTE: Both top and bottom covers must be in place, or in the case of the portable instrument, the unit must be in its case.

1. Set the range switch (SWB) to the CAL. \& NOISE position, the input switch (SWA) to the $0.1 \mathrm{M}-\Omega$ position, and the meter switch (SWC) to the 0 db , position.
2. Set the CAL. control to minimum (fully anti-clockwise). The meter pointer should not read up scale by more than $1 / 16$ in. approximately from zero.
3. Set the meter attenuator switch to the -70 db . position. The meter reading should be at least 16 db . below the full scale reading of the meter.
4. Turn SWB to the X1 position and the frequency dial to $50 \mathrm{c} / \mathrm{s}$. Adjust the hum control RV8 at the rear of the chassis for minimum meter deflection, with the attenuator still set to -70 db .

5.3.3 Level Calibration

1. Set the range switch to the dbm . position, and input switch to 600Ω UNBAL.
2. Set the audio oscillator to $1000 \mathrm{c} / \mathrm{s}$ and its output to 600Ω unbalanced. Connect it to the distortion and noise meter via the 600Ω pad.
3. Set the pad to 0 db . and the meter switch to +10 dbm .
4. Connect the A.C. voltmeter across the output of the oscillator and adjust the output control to give a reading of 2.45 V . $\pm 2 \%$.
5. By means of the preset potentiometer RV7, set the pointer on the meter of the distortion and noise meter to exactly full scale.
5.3.4 Network Alignment
(a) Set-up
6. Screw on the bottom cover, and replace top cover as far as possible consistent with access to the preset adjustments.
7. Set the input switch SWA to the $0.1 \mathrm{M}-\Omega$ position and the range switch to the CAL. position.
8. Set the meter switch SWC to the 100% position and the CAL. control to maximum.
9. Set the FREQUENCY dial to $25 \mathrm{c} / \mathrm{s}$, and the $\triangle \mathrm{F}$ and R controls to their mean positions (pointers vertical).
10. Set the preset controls RV2, RV3, RV6B and RV4 also to their approximate mean positions.
11. Connect the audio oscillator to the input jacks or terminals, using the high impedance output from the oscillator. Set the frequency to $250 \mathrm{c} / \mathrm{s}$ and adjust the output level to give full scale deflection on the distortion and noise meter.
(b) Alignment
12. Turn the range switch SWB to the X10 position and adjust the main frequency dial in conjunction with RV3 until an absolute minimum reading is obtained. It is important that neither the ΔF or the R control be touched during this operation. It is also essential that the main frequency dial and RV3 be adjusted alternately until an irreducible minimum is obtained, altering the setting of the attenuator as required to keep a readable deflection on the meter.
13. Set the oscillator to $2500 \mathrm{c} / \mathrm{s}$ and the FREQUENCY dial to $250 \mathrm{c} / \mathrm{s}$, then, still using the X10 position, adjust trimmers C8 and C12 alternately until minimum deflection is obtained.
14. Re-set the oscillator frequency to $250 \mathrm{c} / \mathrm{s}$, and the FREQUENCY dial to $25 \mathrm{c} / \mathrm{s}$. Re-set RV3 for minimum deflection.
15. Repeat step 2, and then step 3, alternately until the alignment is accurate at both ends of the band.
16. As a check on the accuracy of alignment, tune for minimum deflection at both ends, using the FREQUENCY dial and R control only. The R control should not require to be moved from its centre position by more than $\pm 45^{\circ}$, and the residual readings on the meter should be in the order of 0.12%.
17. Change the RANGE switch to X1 and check at $25 \mathrm{c} / \mathrm{s}$, $100 \mathrm{c} / \mathrm{s}$ and $250 \mathrm{c} / \mathrm{s}$ for adequate range of R control. If necessary, reset RV4.
18. Change the RANGE switch to X100 and check at 2.5 $\mathrm{kc} / \mathrm{s}, 10 \mathrm{kc} / \mathrm{s}$ and $25 \mathrm{kc} / \mathrm{s}$ for adequate range of R control. If necessary, reset RV2.
5.3.5 Voltages

The following voltages were measured with respect to earth using a Voltohmyst. These are typical figures, and may vary by $\pm 15 \%$ due to commercial tolerances in valves and resistors.

Valve

	1	3	6	7	8	9
V1	135	3.5	180	-	3.5	-
V2	160	3.5	160	-	3.5	-
V3	125	3.0	125	-	3.0	-
V4	120	3.0	135	-	3.0	-
V5	75	3.0	80	80	-	2.0
H.T.	MR1/MR4		C31	C32		C33
270			210	205		200

6. COMPONENT SCHEDULE

When ordering replacement parts, please quote ALL details given below for a particular component, TOGETHER WITH the type number of the unit and the circuit reference of the component.

The component supplied against the order may not be identical with the original item in the equipment but will be a satisfactory replacement differing in only minor mechanical or electrical details; such differences will not impair the operation of the equipment.

Many resistors and capacitors in the component schedule have been described in terms of style (resistors) and manufacturer's reference (capacitors). For full details of the components so described, reference should be made to Forms 6000-A760 and 6000-A761, respectively. These Forms will be found at the end of this Section.

$\frac{\text { Circuit }}{\text { Ref.No. }}$		Description	$\frac{\text { Manufacturer's }}{\frac{\text { Ref.No. }}{}}$
(a)	Capacitors		
C1	$0.22 \mu \mathrm{~F}$		Philips C296AC
C2	$16 \mu \mathrm{~F}$	$-10+50 \%, 450 \mathrm{VW}$, electro., tub. met. case	Ducon EE
C3	$0.1 \mu \mathrm{~F}$		Philips C296AA
C4	$0.1 \mu \mathrm{~F}$		Philips C296AA
C5	Not used		
C6	$16 \mu \mathrm{~F}$	$-10+50 \%, 450 \mathrm{VW}$, electro., tub. met. case	Ducon ET
C7	24-880pF	var., part of 2-gang capacitor C7/C13	AWA Pt. 18682
C8	4-25pF	var., trimmer, concentric	Philips 82755/25E
C9	47 pF		Ducon CTR.NPO
C10	3-10pF	variable, rotary, CVA50	5910-Z160015
C11	15 pF		Ducon CTR. NPO
C12	4-25 pF	variable, trimmer, concentric	Philips 82755/25E
C13	24-880pF	var., part of 2 -gang capacitor C7/C13	
C14	$16 \mu \mathrm{~F}$	$-10+50 \%, 450 \mathrm{VW}$, electro., tub.met.case	Ducon EE
C15	$16 \mu \mathrm{~F}$	$-10+50 \%, 450 \mathrm{VW}$, electro., tub.met.case	Ducon ET
C16	$8 \mu \mathrm{~F}$	$-10+50 \%, 300 \mathrm{VW}$, electro., tub.met.case	Ducon ET2C
C17	. $047 \mu \mathrm{~F}$		Philips C296AA
C18	$16 \mu \mathrm{~F}$	$-10+50 \%, 450 \mathrm{VW}$, electro., tub.met.case	Ducon EE
C19	$0.1 \mu \mathrm{~F}$		Philips C296AC
C20	$64 \mu \mathrm{~F}$	$-10+50 \%, 6 \mathrm{VW}$, electro., sub-miniature	Ducon EUO402

$\mathrm{C} 21 \quad 0.47 \mu \mathrm{~F}$
$\mathrm{C} 22 \quad 0.1 \mu \mathrm{~F}$
$\mathrm{C} 23 \quad 0.47 \mu \mathrm{~F}$
C24 $0.47 \mu \mathrm{~F}$
C25 $0.47 \mu \mathrm{~F}$
C26 $64 \mu \mathrm{~F}-10+50 \%$, 6 VW , electro., sub-miniature
C27 $64 \mu \mathrm{~F}-10+50 \%, 6 \mathrm{VW}$, electro., sub-miniature
C28 $80 \mu \mathrm{~F}-10+50 \%$, 3VW, electro., sub-miniature
C29 Not used
C30 $0.1 \mu \mathrm{~F}$
C31 $16 \mu \mathrm{~F}-10+50 \%, 450 \mathrm{VW}$, electro., tub. met. case
C32 $100 \mu \mathrm{~F} \quad 350 \mathrm{VW}$, electro., tub. met.case
C33 $100 \mu \mathrm{~F} \quad 350 \mathrm{VW}$, electro., tub. met. case
(b) Rectifiers

MR1 Silicon diode
MR2 Germanium diode
MR3 Germanium diode
MR4 Silic on diode
MR5 Silic on diode
MR6 Silicon diode
(c) Resistors

R1 68k Ω style RC2-E
R2 Not used
R3 $\quad 22 \mathrm{k} \Omega \quad \pm 5 \%, 1 / 2 \mathrm{~W}$, carbon film
R4 $100 \mathrm{k} \Omega$ style RC2-E
R5 $39 \mathrm{k} \Omega$ style RC2-E
R6 $\quad 390 \mathrm{k} \Omega \pm 5 \%, 1 / 2 \mathrm{~W}$, carbon film
R7 $\quad 15 \mathrm{k} \Omega \quad \pm 5 \%, 1 / 4 \mathrm{~W}$, carbon film
R8 $\quad 470 \mathrm{k} \Omega \pm 5 \%, 1 / 2 \mathrm{~W}$, carbon film
R9 $27 \mathrm{k} \Omega$ style $\mathrm{RC} 2-\mathrm{E}$
R10 Not used
R11 $470 \Omega \pm 5 \%, 1 / 4 \mathrm{~W}$, carbon film
R12 $6.8 \mathrm{M} \Omega \pm 1 \%, 1 \mathrm{~W}$, carbon film
R13 $680 \Omega \pm 1 \%, 1 / 4 \mathrm{~W}$, carbon film, grade 1
$\begin{array}{ll}\text { R14 } & 68 \mathrm{k} \Omega \pm 1 \%, 1 / 4 \mathrm{~W} \text {, carbon film, grade } 1 \\ \text { R15 Not used }\end{array}$

Philips C296AC
Philips C296AC
Philips C296AC
Philips C296AC
Philips C296AC
Ducon EU0402
Ducon EU0402
Ducon EU0401
Philips C296AC
Ducon EE
UCC type EMB
UCC type EMB

1N3195/RAS310AF
OA160
OA160
1N3195/RAS3IOAF
1N3195 "
1N3195 "

Philips B8-305-06

Philips B8-305-06
Philips B8-305-05
Philips B8-305-06

Philips B8-305-05
Welwyn C24
IRC type DCC
IRC type DCC

R16 $68 \mathrm{k} \Omega \quad \pm 1 \%, 1 / 4 \mathrm{~W}$, carbon film, grade 1
R17 $680 \mathrm{k} \Omega \quad \pm 1 \%, 1 / 4 \mathrm{~W}$, carbon film, grade 1
R18 $6.8 \mathrm{M} \Omega \quad \pm 1 \%, 1 \mathrm{~W}$, carbon film
R19 $33 \mathrm{k} \Omega \quad \pm 5 \%, 1 / 4 \mathrm{~W}$, carbon film
R20 Not used
R21 $6.8 \mathrm{k} \Omega$ style RC2-E
R22 $2.2 \mathrm{k} \Omega$ style RC2-E
R23 Not used
R24 Not used
R25 Not used
R26 $22 \mathrm{k} \Omega \pm 5 \%, 1 / 2 \mathrm{~W}$, carbon film
$\mathrm{R} 27 \quad 39 \mathrm{k} \Omega \pm 5 \%, 1 / 2 \mathrm{~W}$, carbon film
R28 10k style RC2-E
R29 15k style RC2-E
R30 Not used
R31 $4.7 \mathrm{k} \Omega \quad \pm 1 \%, 1 / 4 \mathrm{~W}$, carbon film, grade 1
R32 $1.5 \mathrm{k} \Omega \pm 1 \%, 1 / 4 \mathrm{~W}$, carbon film, grade 1
R33 $470 \Omega \quad \pm 1 \%, 1 / 4 \mathrm{~W}$, carbon film, grade 1
R34 $150 \Omega \pm 1 \%, 1 / 4 \mathrm{~W}$, carbon film, grade 1
R35 Not used
R36 $47 \Omega \quad \pm 1 \%, 1 / 4 \mathrm{~W}$, carbon film, grade 1
R37 $15 \Omega \quad \pm 1 \%, 1 / 4 \mathrm{~W}$, carbon film, grade 1
R38 $10 \Omega \quad \pm 1 \%, 1 / 4 \mathrm{~W}$, carbon film, grade 1
R39 $22 \Omega \quad \pm 1 \%, 1 / 4 \mathrm{~W}$, carbon film, grade 1
R40 Not used
R41 $470 \mathrm{k} \Omega ~ \pm 5 \%, 1 / 2 \mathrm{~W}$, carbon film
R42 $22 \mathrm{k} \Omega \quad \pm 5 \%, 1 / 2 \mathrm{~W}$, carbon film
R43 $100 \mathrm{k} \Omega \pm 5 \%, 1 / 2 \mathrm{~W}$, carbon film
R44 $4.7 \mathrm{k} \Omega$ style RC2-E
R45 100Ω style RC2-E
R46 $390 \mathrm{k} \Omega ~ \pm 5 \%, 1 / 2 \mathrm{~W}$, carbon film
R47 $1 \mathrm{M} \Omega \quad \pm 5 \%, 1 / 2 \mathrm{~W}$, carbon film
R48 $100 \mathrm{k} \Omega \pm 5 \%, 1 / 2 \mathrm{~W}$, carbon film
R49 $1 \mathrm{k} \Omega \pm 5 \%, 1 / 2 \mathrm{~W}$, carbon film
R50 Not used
R51 $390 \mathrm{k} \Omega \pm 5 \%, 1 / 2 \mathrm{~W}$, carbon film
R52 $15 \mathrm{k} \Omega$ style RC2-E
R53 $1 \mathrm{M} \Omega \quad \pm 5 \%, 1 / 2 \mathrm{~W}$, carbon film
R54 $47 \mathrm{k} \Omega \quad \pm 5 \%, 1 / 2 \mathrm{~W}$, carbon film
R55 47 style RC2-E

IRC type DCC
IRC type DCC
Welwyn C24
Philips B8-305-05

Philips B8-305-06
Philips B8-305-06

IRC type DCC
IRC type DCC
IRC type DCC
IRC type DCC

IRC type DCC
IRC type DCC
IRC type DCC
IRC type DCC

Philips B8-305-06
Philips B8-305-06
Philips B8-305-06

Philips B8-305-06
Philips B8-305-06
Philips B8-305-06
Philips B8-305-06

Philips B8-305-06
Philips B8-305-06
Philips B8-305-06

R56 $\quad 1 \mathrm{k} \Omega \quad \pm 5 \%, 1 / 2 \mathrm{~W}$, carbon film
R57 $2.2 \mathrm{k} \Omega$ style RC2-E
R58 $4.7 \mathrm{k} \Omega$ style RWV4-K
R59 680Ω style RWV4-K
R60 Not used
R61 680』 style RWV4-K
R62 Not used
R63
R64
R65
R66
RV1
RV2
RV3
RV4
RV5
RV6

RV7
RV8
(d) Sockets

9-pin, miniature, P.T.F.E.
9-pin, miniature, P.T.F.E.
$9-\mathrm{pin}$, miniature, P.T.F.E.
9-pin, miniature, P.T.F.E.
9-pin, miniature, P.T.F.E.
(e) Switches

SWA Oak H type
SWB Oak H type
SWC Oak H type
(f) Transformers

TR1
TR2

Philips B8-305-06

Plessey E
Ducon PTU
Ducon PTU
Ducon PTU

IRC type HMC

Colvern CLR4239/263
Colvern CLR4239/263

(g) Miscellaneous

PLA Plug, 4-pin, male contact, speaker

Teletron

PLB Plug, 3-pin, male contact
SKA Socket, 4-pin, female contact, speaker
FS1 Fuse, glass cartridge, loaded 1A
FS2 Fuse, glass cartridge, loaded 1A
JKA Jack, tip-ring-sleeve, special
JKB Jack, tip-ring-sleeve, special
M1 Multimeter, moving coil
$215 \mu \mathrm{~A}$ movement, 750Ω resistance, Master PT35
Terminal, black, insulated Terminal, red, insulated
LP1 Lamp, 6.3V, 0.25A, tub., M.E.S. base

Ringrip 53
Teletron
Belling Lee L1 055
Belling Lee L1 055
Transmission
Products TP1120
Transmission
Products TP1120

AWA 56068V124
Gallard 2C
Gallard 2C
AWA code 428105

DATA ON RESISTORS

Composition and wire-wound vitreous enamelled resistors described by the "style" nomenclature are made by various manufacturers to RCS standards, except where marked *. Resistances available are shown where each manufacturer does not make the complete range. Wattage ratings are for $70^{\circ} \mathrm{C}$ ambient. Non-standard tolerances, where used, are specified in the Component Schedule.

COMPOSITION RESISTORS

	DESCRIPTION		$\frac{\text { RANGE }}{(\text { ohms) }}$
STYLE		MANUFACTURER	
RC2-B	grade $1, \pm 5 \%, 1 \mathrm{~W}$	IRC type DCG Welwyn C24 Painton 75	$\begin{aligned} & 120-1 \mathrm{M} \\ & \text { all } \\ & 10-3.9 \mathrm{M} \end{aligned}$
$\mathrm{RC} 2-\mathrm{C}$	grade $1, \pm 5 \%, 3 / 4 \mathrm{~W}$	IRC type DCE Welwyn C23 Painton 74	$\begin{aligned} & 120-1 \mathrm{M} \\ & \text { all } \\ & 10-1.8 \mathrm{M} \end{aligned}$
RC2-E	grade 1, $\pm 5 \%, 1 / 4 \mathrm{~W}$	IRC type DCC Welwyn C21 Painton 72	$\begin{aligned} & 100-1 \mathrm{M} \\ & \text { all } \\ & 10-100 \mathrm{k} \end{aligned}$
$\mathrm{RC} 7-\mathrm{H}$	grade $2, \pm 10 \%, 1 / 2 \mathrm{~W}$	IRC type BTA Erie 8 Morganite AY	$\begin{aligned} & \text { all } \\ & \text { all } \\ & \text { all } \end{aligned}$
RC7-J	grade $2, \pm 10 \%, 1 / 4 \mathrm{~W}$	Erie 9	10-680
RC7-K	grade $2, \pm 10 \%, 1 / 4 \mathrm{~W}$	Erie 16 IRC type BTS	$\begin{gathered} \text { all } \\ 390-820 \mathrm{k} \end{gathered}$
RC7-M	grade $2, \pm 10 \%, 3 / 4 \mathrm{~W}$	IRC type BTB	all
RC20	grade $2, \pm 10 \%, 1 / 2 \mathrm{~W}$	Ducon RMB	all
RC32	grade $2, \pm 10 \%$, 1 W	Ducon RMC	all

WIRE-WOUND RESISTORS, VITREOUS ENAMEL COATED

Tolerance on all these resistors is $\pm 10 \%$ up to and including 47Ω; $\pm 5 \%$ above 47Ω. RWV3, 4, 5 have wire terminations; RWV1 has ferrule terminations.

STYLE	RATING	DUCON	I. R.C.	WELWYN	PAINTON	ERG.
RWV3-J	1.1/2W	RWV3-J		AW3101	MV1A	74BW
RWV4-J	3W	RWV4-J	RWV4-J	AW3115	306A	58AV
RWV4-K	4.1/2W	RWV4-K	RWV4-K	AW3111	301A	16 AV
RWV4-L	6W	RWV4-L	RWV4-L	AW3112	302A	17 AV
* RWV5-J	10W	$\begin{gathered} \text { RWV5-J } \\ (10-1.5 \mathrm{k} \Omega) \end{gathered}$				
* RWV5-K	15W	RWV5-K				
* RWV1-J	10W	RWV1-J				
* RWV1-K	15W	RWV1-K				
* RWV1-L	30w	RWV1-L				

C 46	P 2006 F
$(10-22 \Omega)$	$(10-22 \Omega)$
C 47	P 2007 F
$(10-47 \Omega)$	$(10-47 \Omega)$

PHILIPS CARBON FILM RESISTORS SERIES B8-305
Carbon film resistors described in the component schedule, by only their value and manufacturer's type (e.g. Philips B8-305-05B), have a tolerance of $\pm 5 \%$ and a power rating according to the following table:-

Type No.	Power Rating
B8-305-05B	$1 / 4 \mathrm{~W}$
B8-305-06B	$1 / 2 \mathrm{~W}$
B8-305-07B	1 W
B8-305-08B	2 W
B8-305-00B	0.1 W

WELWYN METAL OXIDE INSULATED RESISTORS SERIES F

Metal oxide resistors described in the component schedule by only their value and manufacturer's type number (e.g. Welwyn F32) have a tolerance of $\pm 5 \%$ and a power rating according to the following table:-

Type No.	Power Rating
F32	3.5 W
F33	5 W
F34	7 W
F35	8.5 W

DATA ON CAPACITORS

The following table gives the standard voltage rating and capacitance tolerance for capacitors described in the component schedule only by their capacitance and manufacturer's type. Non-standard tolerances, where used, are specified in the Component Schedule.

DUCON CERAMIC DISC: RATING 500VW

			TOLERANCE		$+100 \%$
TYPE	$\pm 0.5 \mathrm{pF}$	$\pm 1 \mathrm{pF}$	$\pm 5 \%$	$\pm 20 \%$	$\underline{-20 \%}$
CDS. NPO, styles A-D, F	$1-6.8 \mathrm{pF}$	$10-15 \mathrm{pF}$	$18-100 \mathrm{pF}$		
CDS. N750, styles A-F	$3.3-6.8 \mathrm{pF}$	$8,10 \mathrm{pF}$	$12-330 \mathrm{pF}$		
CDS. HI-K, styles AY-FY			$100-10000 \mathrm{pF}$		
CDS. HI-K, styles AZ-FZ			$470-15000 \mathrm{pF}$		

DUCON CERAMIC TUBULAR; RATING 500VW

TYPE		TOLERANCE		+100\%
	$\pm 0.5 \mathrm{pF}$	$\pm 1 \mathrm{pF}$	$\pm 5 \%$ 迆	-20\%
CTR. NPO, styles A-F	6. 8 pF	$10-18 \mathrm{pF}$	22-330pF	
CTR. N750, styles A-F		$10-18 \mathrm{pF}$	22-1000pF	
CTR. HI-K, styles AY-DY			220-1500	
CTR. HI-K, styles AZ-CZ				00-15000pF

PAPER, TUBULAR, METAL CASE, INSULATED

TOLERANCE

TYPE			-	
		$\begin{aligned} & \text { RATING } \\ & \text { D.C.V.W. } \end{aligned}$	$\pm 20 \%$	$\pm 25 \%$
Ducon	PRC	200	0. $25 \mu \mathrm{~F}-1 \mu \mathrm{~F}$	$0.05 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}$
	PRC	350		$0.02 \mu \mathrm{~F}-0.05 \mu \mathrm{~F}$
	PRC	750	$0.05 \mu \mathrm{~F}-0.25 \mu \mathrm{~F}$	
	PRC	1000	$0.05 \mu \mathrm{~F}, 0.25 \mu \mathrm{~F}$	
	PRM (stud Mtg.)	200, 350, 500	$0.1 \mu \mathrm{~F}-0.5 \mu \mathrm{~F}$	
UCC	PMM	200		$0.05 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}$
	PMM	350		$0.005 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}$
	PMM	500 1000		$0.001 \mu \mathrm{~F}-0.02 \mu \mathrm{~F}$ $0.001 \mu \mathrm{~F}, 0.002 \mu \mathrm{~F}$
	PMP	350	0. $1 \mu \mathrm{~F}-1 \mu \mathrm{~F}$	
	PMP	500	$0.05 \mu \mathrm{~F}-0.5 \mu \mathrm{~F}$	
	PMP	750	$0.02 \mu \mathrm{~F}$	
	PMP	1000	$0.1 \mu \mathrm{~F}$	$0.005 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$

FORM 6000-A761

SIMPLEX FOIL AND METALLISED MICA; RATING 500VW

TYPE	$\pm 1 \mathrm{pF}$	$\frac{\text { TOLERANCE }}{ \pm 5 \%}$	10
PT (foil)			470-1000pF
SM (foil)			1500-10000pF
MS (metallised)	$10-33 \mathrm{pF}$	47-330pF	
SS (metallised)		470-1000pF	
SM (metallised)		1500-10000pF	

POLYESTER, TUBULAR, PHILIPS SERIES C296

TYPE
C296AA
C296AC

RATING
125VW D.C.
400VW D. C.

TOLERANCE
$\pm 10 \%$
$\pm 10 \%$

